Using PXI for Complex Data Acquisition Systems

Philip Ehlers
Field Sales Engineer
What Is a Complex Data Acquisition System?

- Unique synchronization needs
- Mixture of different sensor types
- Inline signal processing
- High-speed streaming
PCI eXtensions for Instrumentation

- PCI electrical bus with the rugged, modular, Eurocard mechanical packaging of CompactPCI
- PC-based platform optimised for test, measurement, and control
- Advanced timing and synchronization features
- Support for real-time multicore processors

Real-Time Processor Controller

More Than 1,500 PXI Products Available
Embedded PXI System Controllers

Windows-Based Embedded Controllers
- High-performance
- Integrated peripherals
- Entire system in one chassis

Real-Time Embedded Controllers
- Determinism and reliability with LabVIEW Real-Time
- Select high-performance or low-cost/low-power
- Headless operation

southafrica.ni.com/techsym
Remote PXI System Controllers

PC Control of PXI
• Use latest high-performance PCs
 • PCI Express with MXI-Express
 • PCI with MXI-4
• High-speed, software transparent links
 • Up to 110 MB/s sustained throughput
• Build multi-chassis PXI systems
• Copper and fiber-optic cabling options

Laptop Control of PXI
• Use latest high-performance laptop computers
 • ExpressCard with ExpressCard MXI
 • PCMCIA CardBus
• High-speed, software transparent links
 • Up to 110 MB/s sustained throughput
• PXI controllers for portable applications
• Use with DC-powered chassis for mobile systems
PXI Chassis

Chassis Offering

- 4, 6, 8, 14, and 18-slot
- Portable, benchtop, and rack-mount
- AC and DC options
- PXI/SCXI combination chassis with integrated signal conditioning
PXI Products. . . More Than 1,500 and Counting

Data Acquisition and Control
- Multifunction I/O
- Analog I/O
- Digital I/O
- Counter/Timer
- FPGA/Reconfigurable I/O
- Machine Vision
- Motion Control
- Signal Conditioning
- Temperature
- Strain/Pressure/Force/Load
- Synchro/Resolver
- LVDT/RVDT
- Many More. . .

Modular Instrumentation
- Digital Waveform Generator
- Digital Waveform Analyzer
- Digital Multimeter
- LCR Meter
- Oscilloscope/Digitizer
- Source/Signal Generator
- Switching
- RF Signal Generator
- RF Signal Analyzer
- RF Power Meter
- Frequency Counter
- Programmable Power Supply
- Many More. . .

Bus Interfaces
- Ethernet, USB, IEEE 1394
- SATA, ATA/IDE, SCSI
- GPIB
- CAN, DeviceNet
- Serial RS232, RS485
- VXI/VME
- Boundary Scan/JTAG
- MIL-STD-1553, ARINC
- PCMCIA/CardBus
- PMC
- PROFIBUS
- LIN
- Many More. . .

Others
- IRIG-B, GPS
- Direct-to-Disk
- Reflective Memory
- DSP
- Optical
- Resistance Simulator
- Fault Insertion
- Prototyping/Breadboard
- Graphics
- Audio
- Many More. . .

southafrica.ni.com/techsym
PXI Adopted by Wide Range of Industries

Consumer Electronics
Military & Aerospace
Automotive

Communications
Semiconductor
Medical

southafrica.ni.com/techsym
Multichassis Synchronization
You Can Achieve Synchronization on PXI in Many Ways

Considerations

• Matched cable lengths
• 2 to 3 cables required
• Limited distance

*For a reference example, search “Structural Test Reference Architecture” on ni.com
You Can Achieve Synchronization on PXI in Many Ways

Signal-Based

Share Physical Clocks/Triggers

Time-Referenced

Share Time

Generate Signals

Clock Discipline

Clock Discipline
PXI Express Clock Discipline Bundle

Timing and Synchronization Module
Clock Discipline

Considerations
• Multiple modules
• Synchronization accuracy

NI PXIe-6674T
NI PXI-6682H
GPS, 1588, IRIG-B
Time Reference

southafrica.ni.com/techsym
Large-Channel-Count DAQ Reference Architectures

- NI LabVIEW software templates
- Acquire and log data
- Synchronize chassis
- Support variety of I/O
- Scale to thousands of channels

Diagram showing a master and multiple slave units connected.
EtherCAT Distributed Synchronization

2. Distributed Hardware and Synchronization

Master Time Reference

IEEE 1588

southafrica.ni.com/techsym
GPS Distributed Synchronization

2. Distributed Hardware and Synchronization

Master Time Reference

GPS

southerni.com/tetchsym
Hybrid Distributed Synchronization

2. Distributed Hardware and Synchronization

Master Time Reference

GPS

Shared Clocks and Triggers
Multidevice PXI_Clk10

Disciplining: Software

Just three VIs...
Signal Processing

Filter
- error in (no error)
- Lower Cut-Off
- Signal
- error out
- Filtered Signal
You Can Achieve Any Channel Mix With PXI Modularity

Component Durability Testing
You Can Achieve Any Channel Mix With PXI Modularity

Aerodynamic Wind Tunnel Testing

Strain

Vibration

Pressure

southafrica.ni.com/techsym
Signal Conditioning for Common Measurement Types

<table>
<thead>
<tr>
<th></th>
<th>Filtering</th>
<th>Amplification</th>
<th>Excitation</th>
<th>Shunt Calibration</th>
<th>Bridge Completion</th>
<th>Isolation</th>
<th>Cold-Junction Compensation (CJC)</th>
<th>Attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain Gage</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Force, Pressure, Torque Sensors</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermocouple</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>High Voltage</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
High-Performance I/O—SC Express

NI PXIe-4844 Optical Interrogator
NI PXIe-449x Dynamic Signal Analyzers
NI PXIe-433x Bridge Input Modules
NI PXIe-4353 TC Input Module
NI PXIe-430x HV Input Module

Strain
Load
Pressure
Temperature
Torque
HV Isolated AI

Acceleration
Temperature
Strain
Load
Pressure
Temperature
Torque
HV Isolated AI

southafrica.ni.com/techsym
NI SC Express Key Features

1. Increased Accuracy
 - Up to 24-bit resolution
 - Delta-Sigma A/D converters
 - Anti-aliasing filters per channel

2. High Bandwidth
 - PXI Express – Dedicated bandwidth/device
 - Dynamic strain measurements
 - ADC per channel

3. Best-in-Class Synchronization
 - 100 MHz reference clock built-in chassis
 - ns synchronization with NI-DAQmx multidevice task
 - Automatic synchronization with DSA & NI X Series

4. Easy to Use
 - Same NI-DAQmx driver as DAQ and DSA
 - New bridge channel types in NI-DAQmx
 - Modules & terminal blocks auto-recognized
NI-DAQmx Simplifies the Scaling for a Wide Variety of Sensors

NI LabVIEW

ANSI C

DAQmxCreateAIVoltageChan
DAQmxCreateAIVoltageRMSChan
DAQmxCreateAIThrmcp1Chan
DAQmxCreateAIRTDChan
DAQmxCreateAIThrmstrChanIex
DAQmxCreateAIThrmstrChanVex
Data Streaming

- Hard-Drive Interface
- CPU
- Physical Layer Interface
- ADC/DAC
With Flexibility and High Channel Counts Comes High Data Rates

Architecture of a Typical Data Streaming System

System/Host Computer
- Hard-Drive Interface
- CPU
- Physical Layer Interface
- ADC/DAC

Instrument
- Custom Serial or Parallel ADC/DAC Interface
- Physical Interface to Signal Source/Sink

SATA/SAS
Either Custom or Standard Data Bus
PCI/PCI Express, Ethernet, USB, and So On
Custom Serial or Parallel ADC/DAC Interface
Physical Interface to Signal Source/Sink

southafrica.ni.com/techsym
NI PXIe-8133 with NI PXIe-1075 = 5.6 GB/s total system bandwidth (2.8 GB/s Streaming to/from Disk)

RAID allows:
- 12 TB storage
- 800 MB/s read/write

P2P streaming options:
- NI FlexRIO
- Digitizers and Arbs
- RF VSA
The PXI platform is an ideal platform to create large data streaming solutions.

<table>
<thead>
<tr>
<th>Approximate Latency (μs)</th>
<th>Max Bandwidth (MB/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB 1.1</td>
<td>10</td>
</tr>
<tr>
<td>Fast Ethernet</td>
<td>100</td>
</tr>
<tr>
<td>Gigabit Ethernet</td>
<td>1,000</td>
</tr>
<tr>
<td>USB 2.0</td>
<td>100</td>
</tr>
<tr>
<td>IEEE 1394a</td>
<td>10</td>
</tr>
<tr>
<td>GPIB (HS 488)</td>
<td>10</td>
</tr>
<tr>
<td>GPIB (488.1)</td>
<td>1</td>
</tr>
<tr>
<td>PCI/PXI</td>
<td>0.1</td>
</tr>
<tr>
<td>PCI Express/</td>
<td></td>
</tr>
<tr>
<td>PXI Express (x4)</td>
<td></td>
</tr>
</tbody>
</table>
PCI Express Signaling

- A link is a group of lanes
- Point-to-point high-speed serial
 - 2.5 Gbit/s per lane for Gen 1
- PCI Express provides longevity with Gen 2 and Gen 3
PCI Express

The Progression From PCI

<table>
<thead>
<tr>
<th>PCI Express Feature</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>Significant increase over PCI</td>
</tr>
<tr>
<td>PCI Transparency</td>
<td>PCI software reuse</td>
</tr>
<tr>
<td>Point-to-Point</td>
<td>Not a shared bus, more efficient error correction and detection</td>
</tr>
<tr>
<td>Scalable</td>
<td>Can increase bandwidth by adding more lanes; slots can be unequal—only pay for what you need</td>
</tr>
<tr>
<td>Fewer Pins</td>
<td>Reduces board area and layers; easier PCB routing</td>
</tr>
<tr>
<td>Lower Power</td>
<td>Lower cost and heat</td>
</tr>
</tbody>
</table>
PCI Express Transfer Rates

<table>
<thead>
<tr>
<th>PCI Express Link</th>
<th>Generation</th>
<th>Theoretical Unidirectional Transfer Rates</th>
<th>Theoretical Bidirectional Transfer Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>x4</td>
<td>Gen 1</td>
<td>1 GB/s</td>
<td>1 GB/s x2</td>
</tr>
<tr>
<td>x16</td>
<td>Gen 1</td>
<td>4 GB/s</td>
<td>4 GB/s x2</td>
</tr>
<tr>
<td>x4</td>
<td>Gen 2</td>
<td>2 GB/s</td>
<td>2 GB/s x2</td>
</tr>
<tr>
<td>x16</td>
<td>Gen 2</td>
<td>8 GB/s</td>
<td>8 GB/s x2</td>
</tr>
</tbody>
</table>
PXI Express for High-Speed Streaming

PXI Express System

NI PXIe-88093

PCIe Bus
8.32 GB/s

NI PXIe-1045

1082

Four x4 PCI Express Links

Total system Slot bandwidth depends on controller/chassis combination.
Data Throughput

- x4 PCI Express
- x1 PCI Express
- PCI (32-bit, 33 MHz)

Total Bus Throughput (MB/s) vs Number of Devices
Inline Signal Processing Software That Takes Advantage of Multicore Technology
“The PXI platform from National Instruments enabled the high-channel-count acquisition because of its synchronisation capabilities, small size and modularity. As the platform adds capabilities with higher-performance instruments and faster data transfer speeds with PXI Express, we can meet future requirements and continue to advance our research.”

Dr. Kohji Ohbayashi - Kitasato University of Japan, Center for Fundamental Sciences
A Wide Variety of Real-World Measurements Require Ever More Data

- Acoustic Holography
- Large-Scale Fatigue Testing
- Noise Mapping
- Design Validation
- Algorithm Prototyping

Acoustic Holography of Maglev Trains in Korea: SM Instruments

Structural Aircraft Testing: SITEM
With Piaggio Aero Industries S.p.A

Noise Mapping: Boeing
Conclusion

1 TO 10,000 SENSORS

USB Single-Channel DAQ
NI C Series
 Wi-Fi, Ethernet, USB
NI CompactDAQ
SCXI
PXI

soutbfrica.ni.com/techsym
Demo
Hardware Setup

• NI PXIe-8133 1.73 GHz Quad-Core PXI Express Controller

• NI PXIe-1062Q PXI Express Hybrid Chassis

• NI PXI-4472 8-Channel Dynamic Signal Acquisition Module

• NI PXIe-4330 8 Ch, 24-Bit, 25 kS/s Bridge Input Module

• NI PXIe-6251 16-Bit, 1.25 MS/s (Max), 1 MS/s (Scanning), 16 Analog Inputs
Questions?